PARASITOLOGY: HELMINTHS

1 INTRODUCTION TO HELMINTHS
9 HELMINTHS OF SMALL ANIMALS
25 HELMINTHS OF RUMINANTS
41 HELMINTHS OF SWINE
51 HELMINTHS OF EQUINES
62 COMPARATIVE HELMINTHS REVIEW
69 PRACTICE CASES

These study guides are my personal notes & materials that I used to study for my veterinary school courses. Illustrations are not necessarily drawn to scale but rather more conceptually to better understand how everything connects and where they are. I do not claim to be an expert and can not guarantee the accuracy of all statements.

- Sydney Day
Prepatent period (PPP) - time between infection with a parasite and demonstration of its presence.

Hypobiosis - arrested development where metabolic activity of the parasite ceases within the host in response to resistance by the host or unfavorable environmental conditions.

Periportorment relaxation of resistance (PPRR) - lack of resistance to helminth infections and reproduction in a female host during late pregnancy and early lactation.
CESTODES a.k.a. TAPES segmented flatworms

- Indirect life cycles - need more than one host
- Monoecious - have both male & female reproductive systems
- Lack a complete digestive tract - use flat surface for nutrient & waste exchange

Cyclophyllidea

- Rostellum like cat claws
- Suckers set of 4 around scolex
- Nearest/most immature proglottids
- The rostellum & suckers help with attachment and movement
- Each proglottid is an independent reproductive system

- Mostly only ONE intermediate host
- Families:
 - Taeniidae
 - Monostomidae
 - Anoplocephalidae
 - Dipylidiidae
 - Hymenolepididae

Pseudophyllidea

- Bothria two long, thin, longitudinal grooves for attachment
 - Basically weak version of the suckers that cyclophyllidae have

- Has TWO intermediate hosts
- Involved in aquatic food chains
- Families:
 - Dipylidium
 - Spirometra
GENERAL CESTODE LIFE CYCLE

1. DEFINITIVE HOST consumes INTERMEDIATE HOST
2. Scolex anchors into intestine
3. Neck begins to bud off segments (proglottids)
4. As segments move away from the neck, they develop REPRODUCTIVE ORGANS
5. Self-fertilization
6. Segment gets passed and breaks open
7. Fertilized EGGS either
 - released thru uterine pore
 - accumulate in the segment
8. EGG is consumed by INTERMEDIATE HOST

In CYCLOPHYLLIDEA specifically,

1. EGG consumed by INTERMEDIATE HOST
2. EGG converted → EMBRYOSPHERE → ONCOSPHERE
3. ONCOSPHERE develops in INTERMEDIATE HOST tissues into a METACESTODE (larval stage)
4. DEFINITIVE HOST ingests all or part of INTERMEDIATE HOST containing the METACESTODE
5. ADULT Tapeworm develops in the DEFINITIVE HOST

Cysticercus - translucent, fluid-filled cyst with a single protoasclel in a MAMMALIAN intermediate host

Cysticercoid - solid bodied larval stage in an ARTHROPOD intermediate host
TREMATODES a.k.a. **FLUKES**

- **Monocious** - have both male + female reproductive systems
- Lack a complete digestive tract - use flat surface for nutrient + waste exchange

GENERAL TREMATODE LIFE CYCLE

- ** DEFINITIVE HOST** (Vertebrate)
- Consumed by Definitive Host
- Gets inside a SECOND INTERMEDIATE HOST (Invertebrate or Fish)
- EGG - Usually out into H2O
- Larvae, penetrate intermediate host
- CERCARIA - Looks like a tadpole
- Burst out of small + gets onto a leaf
- INTERMEDIATE HOST (Mollusc, usually a snail)
NEMATODES

- **Dioecious**: male or female reproductive organs; sexual reproduction
- **Sexual dimorphism**: males smaller than females
- **Many are free-living and feed on organic debris**
 - Others parasitize plants and animals
- **Direct or Indirect life cycles**
 - Majority = direct
- **Unsegmented, cylindrical worm**
 - **Pseudocoelom**: large body cavity containing fluid under pressure
 - So that pressure provides mechanism for movement

Female

- Ovary
- Uterus
- Vagina
- Vulva
- Eggs
- Intestine

Male

- Mouth opening
- Intestine
- Testis
- Capulatory bursa

Can be...

- **Oviparous**: one celled or segmented egg passed
- **Ooviviparous**: larvated egg passed
- **Viviparous**: living larvae passed
General Nematode Life Cycle

- **Egg** → **L1** → **L2** → **L3** → **L4** → Adult male/female → Adults molt → In most cases, leave the host as Eggs

USUALLY! **INFECTIVE STAGE**
Stage that infects the definitive host

Common Migration Pathways Within the Host

- **Local Migration** - localized to the same organ (usually gut)

- **Direct Migration** - direct penetration through organs towards a predilection site

- **Hepatotracheal Migration**

 - Coughed up + swallowed
 - Trachea → Bronchi → Lungs → **RIGHT HEART** → Vena cava → Hepatic veins → Liver → Mesenteric veins → Portal vein → Gut
Nematode Superfamily Common Characteristics

Rhabditioidea
- **Order:** Rhabditida
- Only females parasitic
- **Direct** life cycle
 - Larval eggs or larvae passed in feces
 - L3 infective
- **Transmission:**
 - Skin
 - Ingestion
 - Transmammary
- *ex*: Strongylidae

Strongyoidea
- **Order:** Strongylida
- **Family:** Ancylostomidae
 - **Direct** life cycle
 - L3 pass in feces
 - Predilection for small intestine
 - *ex*: Hookworms
- **Family:** Strongylidae
 - **Direct** life cycle
 - Predilection for large intestine
 - *ex*: Cyathostomes

Trichostrongyloidea
- **Order:** Strongylida
- Affects grazing animals
- **Direct** life cycle
 - Segmented eggs passed in feces
 - Predilection for stomach, SI, or trachea/bronchi
- *ex*: Haemonchus
 - Near impossible to dif. species by eggs

Metastrongyloidea
- **Order:** Strongylida
- Mostly **Indirect** life cycles
 - L1 passed in feces
 - Predilection for respiratory tract
- *ex*: Meningeal worm

Oxyuroidea
- **Order:** Oxyurida
- Very host-specific — no dogs/cats!
- L3 infective
- Predilection for colon, cecum, + rectum
- *ex*: Pinworms

Filarioidea
- **Order:** Spirurida
- **Indirect** life cycle (via blood sucker)
- Extraintestinal, nothing passed via feces
- *ex*: Heartworm

Trichuroidea
- **Order:** Enoploida
- Greatest diversity of all superfamilies
- **Direct** life cycle
- *ex*: Trichinella, Trichuris
HELMINTHS of SMALL ANIMALS

CARDIOVASCULAR
Dirofilaria immitis
Heartworm

INTEGUMENT
Dipetalonema reconditum
Dracunculus insignis
Canine Guinea Worm

SMALL INTESTINE
ROUND WORMS
Toxocara canis
Dog Roundworm
Toxocara cati
Cat Roundworm
Toxascaris leonina

HOOK WORMS
Ancylostoma caninum
Common Dog Hookworm
Ancylostoma tubaeformae
Common Cat Hookworm
Ancylostoma braziliense
Southern Hookworm
Uncinaria stenocephala
Northern Hookworm
Strongyloides stercoralis
Puppy Mill Worm

TAPE WORMS
Taenia spp.
Echinococcus spp.
Dipylidium caninum
Flea Tapeworm

EYE
Thelazia californiensis
Eyeworm

RESPIRATORY
Filaroides osteri
Capillaria aerophila
Aelurostrongylus abstrusus
Paragonimus kellicotti
Lung Fluke

URINARY
Pearsonema (Capillaria) plica
Dioctophyma renale
Giant Kidney Worm

LARGE INTESTINE
Trichuris vulpis
Dog Whipworm
Trichuris campedalis
Cat Whipworm
Toxocara canis "Dog Roundworm"

DIRECT LIFE CYCLE
- Dogs
 - Hepatotraheal migration + maturation

<table>
<thead>
<tr>
<th>Segmentated EGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
</tbody>
</table>

★ in older dogs, more larvae in somatic tissue

→ Transplacental infection
→ Transmammary infection

CLINICAL SIGNS
- Noisy breathing
- Cough
- V+/D+
- Stunted growth
- Distended abdomen + discomfort

Death = rare (usually G1 obstruction)

TREATMENT / PREVENTION
- We assume most puppies are + and treat empirically
 - 2 weeks old
 - 4 weeks old
 - 2 months old

MORPHOLOGY
- EGG ~ 75-80 µm

Adults have cervical alae - clear cuticular flanges - running along its anterior lateral margins

Toxocara cat: "Cat Roundworm"

DIRECT LIFE CYCLE
- Cats
 - Hepatotraheal migration + maturation

<table>
<thead>
<tr>
<th>Segmentated EGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
</tbody>
</table>

Zoonotic
Humans can be u.v. visceral larvae, migrations

→ Transmammary infection

DIAGNOSIS
1D of EGGS in feces

ANTHELMINTICS
- Piperazine, Benzimidazoles, Nitroscanate

MORPHOLOGY
- EGG ~ 65-75 µm

Adults have broad cervical alae, giving it an "arrow head" appearance on EM

PATHOLOGY + CLINICAL SIGNS
- Same as for dogs + T. canis

TREATMENT / PREVENTION
- Regular deworming for hunters
- We assume most kittens infected and treat similarly to T. canis
Toxascaris leonina

DIRECT LIFE CYCLE DOGS + CATS

- or ingestion of PARATENIC HOSTS
- L2 → segmented egg → L3

MORPHOLOGY EGGs ~65-80 μm

ADULTS similar to *T. canis*

PATHOLOGY + CLINICAL SIGNS

- light infections not very serious
- heavy infections: D+ dehydration, poor doing, v. infrequently death

DIAGNOSIS

- ID of EGGS in feces

ANTHELMINTICS

- Fenbendazole, Mebendazole, Piperazine, Pyrantel + Dichlorvos

Baylisascaris procyonis

DIRECT LIFE CYCLE RACOONS

- fecal-oral route of infection only
- ingested eggs hatch + larvae develop in the small intestine

DIAGNOSIS

- ID of EGGS in feces

PATHOLOGY

- 90+ species have been found to be infected with *B. procyonis* larvae!

- NONPATHOGENIC in raccoons

- in other species, the larvae can’t mature into adults but they are still highly PATHOGENIC by causing **Neurotropic larval migrans** → has caused several fatal outbreaks in farms, zoos, & research settings

NO effective treatment for incidental hosts (anthelmintics MAY slow larval migration)

PREVENTION IS PARAMOUNT
Nanophyetus salmincola "Salmon Poisoning Fluke"

PATHOLOGY
- *transmits the bacteria Neorickettsia helminthoeca*
- The fluke itself is usually clinically inapparent

- Ly high fever
- weight loss
- vomiting/diarrhea
- lymphadenopathy
- DEATH in 7-10 days

SALMON POISONING DISEASE

DIAGNOSIS
- Identification of N. salmincola EGGS in feces
- History: - Pacific Northwest
 - raw salmon or trout ingestion

Diagnosis of Neorickettsia - confirmed with serology/PCR

HOOKWORMS

Ancylostoma caninum "Common Dog Hookworm"

DIRECT LIFE CYCLE DOGS + WILD DOGS

- Skin-blood migration
- L3
- + transmammary transmission

DIAGNOSIS
- ID of EGGS in feces

ANTHELMINTICS
- Fenbendazole, Pyrantel + more

PATHOLOGY
- Hookworms are all bloodsuckers!

CLINICAL SIGNS
- anemia
- black, tarry stool
- death
- dermatitis related to skin entry

Ancylostoma tubaeformae "Common Cat Hookworm"

CATS, WILD CATS

ANSWELMINTICS

Ancylostoma braziliense "Southern Hookworm"

DOGS, CATS, WILD DOGS + CATS

- Con cause cutaneous larval migrans in humans (a.k.a. "plumber's itch")
 - Usually A. braziliense
 - Self-limiting in 5-6 weeks

Uncinaria stenocephala "Northern Hookworm"

DOGS, CATS, WILD DOGS + CATS

ANTHELMINTICS
- Tetracyclines + Praziquantel, Albendazole or Fenbendazole
Strongyloides stercoralis "Puppy Mill Worm"

PATHOLOGY
ADULTS bury into mucosa of the anterior half of the small intestine

MORPHOLOGY
Small, slender worms ~2mm long

DIRECT LIFE CYCLE

1. Skin-blood migration
2. L3
t3. Female L3s inside Host = Female
4. Male L3
5. Free-living Females
6. Free-living Males

CLINICAL SIGNS
- asymptomatic
- Adult animals
 - Puppies:
 - D+ (sometimes bloody)
 - abdominal pain
 - weight loss
 - coughing, wheezing
 - pneumonia

DIAGNOSIS
Identification of L1s on fecal smear or via Baermann

CONTROL
- difficult to the free-living form
- larval stages susceptible to sunlight, ↑ temp. + desiccation
- proper sanitation/hygiene
- most dewormers work

Taenia spp. Various Tapeworm species

INDIRECT LIFE CYCLE

Definitive Hosts: DOGS + CATS

CLINICAL SIGNS
RARELY causes clinical signs in definitive hosts

PATHOLOGY
Orgon damage 2nd to larval migration + cyst development

MORPHOLOGY
1-9 feet long

DIAGNOSIS
ID of EGGS in feces or visualization of proglottids
Echinococcus spp.

** INDIRECT LIFE CYCLE **

Definitive Hosts:
- *E. granulosus*
 - DOGS *+ other CANIDS* (~7mm long)
- *E. multilocularis*
 - RED FOX (~3.5mm long)

Intermediate Hosts:
- *E. granulosus*
 - HERBIVORES, PIGS, HUMANS, etc.
- *E. multilocularis*
 - MICROTENE RODENTS, HUMANS

CLINICAL SIGNS
RARELY causes clinical signs in definitive hosts

DIAGNOSIS
Problematic - EGGS look the same as *Taenia* spp.

ANTHELMINTICS
Praziquantel

Dipylidium caninum — *Flea Tapeworm*

** INDIRECT LIFE CYCLE. **

Definitive Hosts:
- DOGS, CATS + HUMANS

Intermediate Hosts:
- FLEAS, LICE

MORPHOLOGY
ADULTS 10-70 cm long

CLINICAL SIGNS
Humans can be infected by ingesting fleas

DIAGNOSIS
1D of EGGS in feces or visualization of proglottids

ANTHELMINTICS
Praziquantel + control fleas!
PATHOLOGY

- heavy worm burden → Typhilitis - inflammation of the cecum

CLINICAL SIGNS

- mucoid D+
- mushy stools
 (rarely blood involved)

DIAGNOSIS

1D of EGGS in feces

CONTROL

Routine milbemycin + moxidectin

ANTHELMINTICS

Fenbendazole x 3 days
CARDIOVASCULAR

Dirofilaria immitis "Heartworm"

INDIRECT LIFE CYCLE

DEFINITIVE HOST: DOGS, CATS, FERRETS, HUMANS (RARE)

INTERMEDIATE HOST: MOSQUITOS Aedes sp., Culex sp., Anopheles sp.

1. **L1 → L3 in 2 weeks**
 - Mosquito ingests L1s
 - Mosquito deposits L3 subcutaneously

2. **L3 → L4 in 1-3 days (subcutaneously)**
 - L4 migrate through tissues, mature over 50-70 days to ADULTS (sexually immature)
 - L4 migrate to heart + lungs as early as 70 days post-infection
 - Circulating MICROFILARIA as early as 6 mo post-infection

3. **Sexual maturity in pulmonary artery producing larvae**

PATHOLOGY

Adult worms obstruct the PULMONARY ARTERIES

- Pulmonary endarteritis + fibrosis
 - Inflammation, thickening, scarring
- Turbulence + ↓ flow

CLINICAL SIGNS

- Chronic progressive cough
- Exercise intolerance / fatigue
- Weight loss
- Ascites

VENA CAVA SYNDROME

Large obstruction in vena cava of worms disrupts the venous return

Chronic PULMONARY HYPERTENSION

R-sided HEART FAILURE

MORPHOLOGY

- 15 cm
- 30 cm
- L1 - Microfilaria ~ 300 μm
DIAGNOSIS

- **ANTIGEN DETECTION**: 68-90 days post-infection
 - detects female worms

- **ID Microfilaria in a blood smear**: 6 months post-infection
 - not good in cats (transiently microfilaremic)
 - simple blood smear
 or
 modified Knott’s technique

- **Antibody Detection**: 60 days post-infection
 - Abs only present against female worms
 - cats may only have 2 adult worms, if both worms male, the test will be 🎁

- **Radiography looking for**:
 - enlarged RIGHT heart + enlarged pulmonary arterial trunk

- **Echocardiography**

- **Necropsy**

TREATMENT

- **PREVENTION IS THE NAME OF THE GAME!**

1) **Annual testing**

2) **Chemoprophylactic prevention** - start at 4-8 weeks old, then for life
 - **Ivermectin**: Heartguard, Heartguard Plus, Iverhart
 - **Milbemycin oxime**:Interceptor, Sentinel, Trifexis
 - **Selamectin**: Revolution
 - **Moxidectin**: Advantage Multi
If infected:

- ADULTICIDAL Tx - Melarsomine (I/miscide)
- MICROFILARIACIDAL Tx - Ivermectin
- Surgical removal of worms

ADULTICIDAL TREATMENT PROTOCOL

- **Day 0:**
 1) Exercise restriction
 2) Start on monthly HWP
 3) Start course of Doxycycline

- **Day 60:** 1st Melarsomine injection IM in epaxial muscle

- **Day 90:** 2nd Melarsomine injection

- **Day 91:** 3rd Melarsomine injection

- **Day 120:** Recheck Test

- **Day 150:** Recheck if + at Day 120 and retreated

- **Day 270:** Recheck Test

Wolbachia pipiens

- Gram negative intracellular bacteria with a symbiotic relationship with *Dirofilaria immitis*

- When parasite dies, bacterial antigens are released and cause immune-mediated inflammation

 - This is why *Wolbachia* is a contributor to pathology and clinical signs of HWD

- Susceptible to tetracycline
RESPIRATORY

Filaroides osleri

DIRECT LIFE CYCLE

DOGS

1) LARVAE migrate from intestines to trachea
2) ADULTS live in nodules in large airways

![Dog diagram](image)

Larvae produced in trachea, coughed up + swallowed
Passed in feces

L1 INFECTIVE!

PATHOLOGY

- nodules in trachea + major bronchi
- bronchitis
- mechanical interference with breathing

MORPHOLOGY

ADULTS are small, slender roundworms

♂
♀

~6mm
~13mm

DIAGNOSIS

Identification of LARVAE:
→ in feces
→ in sputum, transtracheal wash, or bronchoalveolar lavage
→ via bronchoscopy

CONTROL

Treatment with albendazole or surgical excision of nodules

Isolate infected animals (highly transmissible in kennel situations)

LOW Prevalence but it is distributed WORLDWIDE

CLINICAL SIGNS

- coughing
- dyspnea (labored breathing)
- stridor (wheezing)
- emaciation, anorexia

ANTHELMINTICS

Albendazole
Capillaria aerophila "Bronchial Capillarids"

DIRECT LIFE CYCLE DOGS, CATS (FOX + OTHER WILD ANIMALS)

1) LARVAE hatch from egg in intestines & migrate to lungs
2) ADULT females lay eggs in the lungs

EGGS get coughed up + swallowed, then passed in the host’s feces

PREPATENT PERIOD = 40 days

MORPHOLOGY

EGGS characteristically boxy + textured

ADULTS 2-3cm long

PATHOLOGY

irritation of the trachea + bronchi

CLINICAL SIGNS

usually just an incidental finding!

- chronic cough
- nasal discharge, sometimes, + not responsive to atox

CONTROL prevent with proper sanitation, treat with most dewormers

ANTHELMINTICS

Broad spectrum dewormers
Aelurostrongylus abstrusus

INDIRECT LIFE CYCLE

DEFINITIVE HOST: CATS
INTERMEDIATE HOST: SNAILS, SLUGS
PARATENIC HOST: BIRDS, RODENTS, AMPHIBIANS, REPTILES

1) LARVAE ingested by host, migrate to lungs
2) ADULTS reside in alveolar ducts & terminal bronchioles
 - females lay eggs here
 - eggs hatch & LARVAE are coughed up & swallowed

MORPHOLOGY
ADULTs are 0.7-1.0cm long in CATs lung parenchyma

PATHOLOGY
EGGS deposited in subpleural nodules of the lung parenchyma

CLINICAL SIGNS
usually NONE - may have chronic cough + dyspnea (labored breathing)

DIAGNOSIS
Identification of LARVAE
- Baermann: not ideal, poorly motile larvae in feces
- fecal smear
 ★→ transtracheal wash / bronchoalveolar lavage ★★ BEST

Possible radiographic evidence (calcification of nodules in lung parenchyma)

CONTROL
avoiding PARATENIC HOSTS (snails + slugs) - primary source of infection for CATS

ANTHELMINTICS
Fenbendazole or Ivermectin
Paragonimus kellicotti — "Lung Fluke"

INDIRECT LIFE CYCLE

DEFINITIVE HOST: DOGS, CATs (+ HUMANS - v. rare)

- Eggs shed in feces, hatch in water

INTERMEDIATE HOST: 1) SNAIL

- Develops into Cercarial stage

2) CRAYFISH

- Develops into INFECTIVE Metacercarial

Ingestion of Raw or Undercooked CRAYFISH

PATHOLOGY

- Ingested young flukes penetrate intestines + enter peritoneal cavity (7-10 days)

- Then migrate into pleural cavity

- Penetrate the LUNGS (10-14 days post infection)

In the LUNGS, flukes are paired up + surrounded by

- Eosinophilic inflammation
- Necrotic tissue
- Cellular infiltrates

CLINICAL SIGNS

- Cough
- Fever
- Malaise
- ★ if cysts rupture (or in heavy infections) pulmonary hemorrhage can occur + cause severe disease

DIAGNOSIS

ID of EGGS in sputum or feces

ANTHELMINTICS

Praziquantel
Albendazole, Fenbendazole
Pseudophyllid (Capillaria) plica

INDIRECT LIFE CYCLE

DEFINITIVE HOST: DOGS, CATS (*many WILD ANIMALS*)

INTERMEDIATE HOST: EARTHWORM

Adults are 1-6 cm long in mucosa of the urinary bladder.

EGG'S released in urine:
- Larvate to L1 in 30-36 days
- L1 consumed by Earthworm
- Earthworm consumed
- L1 → L2 → L3 which migrate to bladder via blood into kidneys

PATHOLOGY

- Bladder irritation + inflammation

CLINICAL SIGNS

- Usually asymptomatic
- But can show signs of:
 - Cystitis
 - Pollakiuria

DIAGNOSIS

- 1D of EGG'S in urine sediment

ANTHELMINTICS

- Ivermectin

TREATMENT/CONTROL

- Ivermectin to treat
- Prevent consumption of Earthworms!

Dioctophyma renale "Giant Kidney Worm"

INDIRECT LIFE CYCLE

DEFINITIVE HOST: DOGS + MINK

INTERMEDIATE HOST: EARTHWORMS

PARATENIC HOST: FISH, FROGS

- Usually infection due to consumption of a PARATENIC HOST
- Prepatent period: 5 months

PATHOLOGY

- Pressure → necrosis of kidney parenchyma
 (progressive to point of no kidney remaining)

CLINICAL SIGNS

- Usually none (alone)
- Since only one kidney normally infected
- Typically the RIGHT one peritonitis if renal capsule ruptures

DIAGNOSIS

- 1D of EGG'S in urine sediment
- Ultrasound

TREATMENT/CONTROL

- Prevent ingestion of untreated H2O, fish, frogs
- Treat with surgical removal
INTEGUMENT

Dipetalonema reconditum

INDIRECT LIFE CYCLE
- **DEFINITIVE HOST**: DOGS
- **INTERMEDIATE HOST**: Ctenocephalides felis (FLEA) + Heterodoxus spiniger (LICE)

ANTHELMINTICS: Ivermectin

NO pathology or clinical signs, but *Microfilaria* in blood, so need to differentiate from Heartworm with Modified Knott’s technique.

Dracunculus insignis "Canine Guinea Worm"

INDIRECT LIFE CYCLE
- **DEFINITIVE HOST**: DOGS, RACOONS, MINK, FOXES, SKUNKS
- **INTERMEDIATE HOST**: COPEPODS
- **PARATENIC HOST**: FROGS able to harbor L3 infective larvae

PATHOLOGY
- Migration from GI tract
- SubQ tissue
- Female to the skin
 - Localized inflammation + blistering enable female to exteriorize her posterior
 - Can release L1 larvae into water

DIAGNOSIS
- Visualization of the worm

TREATMENT / PREVENTION
- Most anthelmintics or surgical excision
- Routine deworming
- Avoiding ingestion of impure H2O

EYE

Thelazia californiens "Eye Worm"

INDIRECT LIFE CYCLE
- **DEFINITIVE HOST**: DOGS, CATS, DEER, SHEEP, HUMANS
- **INTERMEDIATE HOST**: FLIES (*Diptera*)

PATHOLOGY + CUN SIGNS
- eye irritation
 - Excess tears
 - Corneal ulceration
 - Cloudiness
- Consumes *L1* in tears or manure (hosts can swallow their tears)
- Matures to *L3* inside fly
- *L3* infects eye once fly lands on a host and develops there into an ADULT
HELMINTHS OF Ruminants

CNS
Parastrongylus tenuis
Meningeal Worm

Liver
Fasciola hepatica
Fascioloides magna

Eye
Thelazia spp.
Eye worm

Respiratory
Dictyocaulus viviparous
Dictyocaulus filaria
Protostrongylus rupesae
Lung Worm
Muellerius capillaris
Goat Lung Worm

Abomasum
Haemonchus contortus
Haemonchus placoides
Ostertagia ostertagia
Teladorsagia (Ostertagia) circumcincta
Trichostrongylus axei
Trichostrongylus colubriformis

Small Intestine
Cooperia pectinata
Cooperia punctata
Cooperia onchophora
Cooperia curticei
Nematodirus
Buonostomum phlebotomum
Buonostomum trichocephalum
Strongyloides papillosus
Moniezia spp.

Large Intestine
Oesophagostomum radiatum
Oesophagostomum columbianum
Chabertia ovina
Trichuris ovis
Trichuris discolor
Trichuris globulosa
Trichuris tenuis
Abomasum

Haemonchus contortus "Barber Pole Worm"

Order: Strongylida **Superfamily:** Trichostrongyloidea

Cattle: *Haemonchus placei*
Not as clinically relevant.

Direct Life Cycle

1. **L1** larvae are consumed and undergo a molt called "exsheathment" in the rumen.
2. Larvae go on to abomasum and penetrate gastric epithelial cells to mature into adults.

Morphology

Adults 2-3.5 cm
Females have characteristic "barber pole" appearance.

Pathology

- Adult worms louse abomasal wall and suck blood (~50 μL/worm/day).
- Go through hypobiosis in winter months.
- Host PPR - periportalient relaxation of resistance (resistance of the host) to parasites.

Clinical Signs - *Haemonchosis*

- Anemia
- Ascites or bottle jaw (due to protein loss)
- Anorexia, emaciation
- Wool break
- Collapse, death

Diagnosis

1. 10 strongyle eggs in feces
2. Necropsy

Anthelmintics

Much resistance to dewormers; repeat fecals after deworming a must!

Treatment/Prevention

- Multimodal parasite control:
 - FAMACHA-guided deworming
 - Pasture management
 - Breeding for resistance

High fecundity: Females can lay 5,000 eggs/day.

Prepatent Period: ~3 weeks.
Ostertagia ostertagia “Brown Stomach Worm”

MOST IMPORTANT HELMINTH OF CATTLE

Order: Strongylida Superfamily: Trichostrongylidea

SMALL RUMINANTS

DIRECT LIFE CYCLE

- L1 to L3
- **Prepatent period:** ~3 weeks

MORPHOLOGY

- **Adults** are small, slender worms
 - 7-12 mm

CLINICAL SIGNS

- Hypoproteinemia
- Anemia
- Abomasal wall sloughing

OSTERTAGIOSIS

TYPE 1:
- North - summer + autumn
- South - autumn + winter
 - Parasites emerge from the gastric glands 2 weeks after ingestion
 - Failure to gain weight, diarrhea, dehydration

TYPE 2:*
- North - winter + spring
- South - autumn
 - Simultaneous emergence from gastric glands after hypobiosis
 - Severe emaciation, diarrhea, edema, death

DIAGNOSIS

- 1D strongyle eggs in feces

ANTHELMINTICS

- Most effective → no resistance seen... yet

PATHOLOGY

- Ingested L3 penetrate the gastric glands to develop

- Emergence from the gastric glands causes damage + degeneration
 - ↓ HCl, ↓ pepsinogen
 - ↑ Abomasal pH

- Adults also blood suckers
 - Can ingest 10-20% of circulating blood volume in a single day!

PPRR + Hypobiosis can occur

- Avoid by treating the hypobiotic larvae
 - Winter in the North
 - Summer in the South

Necropsy → characteristic textured appearance to Abomasum like moroccan leather
ABOMASUM + SMALL INTESTINE

Trichostrongylus spp.

- **Order:** Strongylida
- **Superfamily:** Trichostrongyloidea

Ruminants, Horses, Pigs

T. axei "Hair Worm"
T. colubriformis "Bankrupt Worm"

Sheep, Goats, Camelids, Exotic Ruminants

DIRECT LIFE CYCLE

- **L3**
- **L2**
- **Prepatent period:** 2-3 weeks

MORPHOLOGY 5.5-8 mm

PATHOLOGY

- Adults ingest **blood** in the Abomasum + Small Intestine

CLINICAL SIGNS

- Rarely causes clinical disease on its own
- Contributing factor to parasitic gastroenteritis
 - Emaciation, anorexia
 - Diarrhea
 - Anemia

DIAGNOSIS

- 10 strongyle EGGs in feces

ANTHELMINTICS

- Most effective → no resistance seen...yet

H.O.T. COMPLEX

Haemonchus, Ostertagia, Trichostrongylus

- **Usually affects young**
 → Resistance improves with age

- **Some life cycles → DIRECT, L3 infective**

 - Hypobiosis
 - Periparturient rise

- **Clinical Signs**
 - Weight loss
 - Rough coat
 - Poor appetite
 - Diarrhea
 - Weakness
 - Bottle jaw
 - Dehydration
 - Anorexia
 - Collapse/recumbency

ANTHELMINTICS

- Must tailor to each form
SMALL INTESTINE

Cooperia spp.

*Order: Strongylida
Superfamily: Trichostrongyloidea*

CATTLE
*C. pectinata
C. onchophora
C. punctati*

SHEEP
C. curticei

ANTHELMINTICS

*Most work
Macrolides less effective*

DIRECT LIFE CYCLE

EGG passed in host feces
L3 is the **INFECTIVE** larval stage

PATHOLOGY + CLINICAL SIGNS

*Takes hundreds of thousands to cause D+ and clinical disease
but can contribute to parasitic gastroenteritis (with others)
by interruption of nutrient absorption*

DIAGNOSIS

ID strongyle EGGs in feces

MORPHOLOGY

Adults 5-11 mm

Nematodirus spp.
"Twisted Wire Worm"

*Order: Strongylida
Superfamily: Trichostrongyloidea*

DIRECT LIFE CYCLE

1° CAMELIDS, RUMINANTS also

- Egg provides extra protection for larvae to survive on pasture indefinitely
- Requires cold weather followed by warm weather
 ➤ see surges in spring

PATHOLOGY + CLINICAL SIGNS

*Larvae penetrate + encyst win mucosa
mucosa damaged when they re-emerge
• mucosal + villous atrophy
• malabsorption
• D+
• dehydration
• anorexia*

DIAGNOSIS

*ID of EGGs in feces
+very characteristic (HUGE) eggs*
Bunostomum spp. "Hookworm"

Order: Strongylida **Superfamily:** Ancylostomatoidea

CATTLE B. phlebotomum **SHEEP + GOATS** B. trigonocephalum

DIRECT LIFE CYCLE
Lympathic - Tracheal Migration

PATHOLOGY
- Lung damage 2º to migration
- Attach to S1 mucosa
 - L3 damage + hemorrhage

MORPHOLOGY
- Adults - 2.5 cm

CLINICAL SIGNS
- Black, tarry D+
- Anemia
- Anorexia

DIAGNOSIS
- 1D of EGGs in feces
- Necropsy

Strongyloides papillosus "Hair Worm"

Order: Rhabditida **Superfamily:** Rhabditoida

DIRECT LIFE CYCLE
Skin - Tracheal Migration

PATHOLOGY
- Lung damage ²º to migration
- Attach to S1 mucosa
 - L3 damage + hemorrhage

MORPHOLOGY
- Adults are slender, ~6 mm

CLINICAL SIGNS
- Loose manure
- Dermatitis
- Rapid death if millions of worms present

DIAGNOSIS
- 1D of EGGs in feces

ANTHELMINTICS
- Fenbendazole, Ivermectin

ANTHELMINTICS
- All effective
Moniezia spp. "Broad" or "Common Tapeworm"

Order: Cyclophyllidae
Superfamily: Anoplocephalidae

INDIRECT LIFE CYCLE
- **DEFINITIVE HOST:** Ruminants
- **INTERMEDIATE HOST:** Forage mites

MORPHOLOGY
- Adults up to 2m long in definitive hosts!

CLINICAL SIGNS
- Usually asymptomatic
- But can cause D+ and obstruction in juveniles

DIAGNOSIS
- 1D of eggs in feces

ANTHELMINTICS
- Benzimidazoles - Fendazole + Albendazole
 "White dewormers"

- + Sanitation
LARGE INTESTINE

Oesophagostomum spp. "Nodular Worm"

Order: Strongyliida
Superfamily: Strongyloidea

CATTLE
O. radiatum
SHEEP + GOATS
O. colombianum
O. venulosum

DIRECT LIFE CYCLE

1. L1
2. L3

Prepatent period: 4-5 months

PATHOLOGY
- Nodule formation - purulent, can calcify
- Lymphocytic, eosinophilic infiltration of LI mucosa

CLINICAL SIGNS
- D+ and weight loss

DIAGNOSIS
- 1D strongyle EGGS in feces
- Necropsy - finding nodules + adult worms in large intestine
- Radiographs - can see calcified nodules

ANTHELMINTICS
All are effective

Chabertia ovina "Large Mouthed Bowel Worm"

Order: Strongyliida
Superfamily: Strongyloidea

DIRECT LIFE CYCLE

1. L1
2. L3

Prepatent period: 9 weeks

MORPHOLOGY
- Stout, white worms
- 8-21 mm long

PATHOLOGY
- Adult's feed on blood + mucous

CLINICAL SIGNS
- Bloody D+
- Weight loss
- Anemia

DIAGNOSIS
- 1D strongyle EGGS in feces
- Necropsy

ANTHELMINTICS
- Broad spectrum + strategic deworming
<table>
<thead>
<tr>
<th>Trichuris spp.</th>
<th>"Whipworms"</th>
</tr>
</thead>
</table>

Order: Enoplida
Superfamily: Trichuroidea

- **T. ovis** SHEEP, GOATS, CAMELIDS
- **T. discolor** CATTLE, SHEEP, GOATS
- **T. globulosa** CATTLE, SHEEP, CAMELIDS
- **T. tenus** CAMELIDS

DIRECT LIFE CYCLE
CAMELIDS most adversely affected

- Prepature period: 7-9 weeks
- L1s can live in environment for several years

MORPHOLOGY
3.5 - 8 cm long
Posterior = short + stout
Anterior = long + slender

PATHOLOGY
CAMELIDS are adversely affected
Usually not pathogenic to ruminants, even in large numbers

CLINICAL SIGNS in CAMELIDS
- Poor growth
- D+
- Anemia

DIAGNOSIS
ID of EGGS in feces
Characteristic bipolar football EGGS

ANTHelmintics
Fenbendazole

Ruminant
RESPIRATORY

Dictyocaulus spp. "Lung Worm"

Order: Strongylida **Superfamily:** Trichostrongyloidea

CATTLE *D. viviparous* **SHEEP+GOATS** *D. filaria* → seldom in the U.S.

DIRECT LIFE CYCLE

Lymphatic - Tracheal Migration

<table>
<thead>
<tr>
<th>L1</th>
<th>L3</th>
</tr>
</thead>
</table>

→ ADULTs live in small bronchi
→ lay EGGS, get coughed up + swallowed
→ EGGS hatch in intestinal tract + L1 are passed in manure

PREPATURE PERIOD:
- 21-22 days in CATTLE
- 26-28 days in SMALL RUMINANTS

PATHOLOGY

- eosinophilic exudate forms during PPD
 → blocks bronchioles
- foreign body granulomas form in lungs
- emphysema

CLINICAL SIGNS

ACUTE
- Verminous pneumonias
 (T: 104-105.5°F)
 - tachycardia + tachypnea
 - nasal discharge
 - coughing
 - death

CHRONIC
- weight loss
- "hoose" or "husk" cough
- slow recovery with possible permanent damage

DIAGNOSIS

ID of LARVAE in feces
→ need a RECTAL sample

Necropsy
→ finding worms in bronchi + frothy exudate

ANTHELMINTICS

All effective, Levamisole preferred – treat at first sign!

CONTROL: rotate pastures
Protostrongylus rufusans "Lung Worm"

Order: Strongylida Superfamily: Metastrongylidea

★ Important due to the threat to Bighorn Sheep population

INDIRECT LIFE CYCLE one of the few nematodes with indirect life cycle

DEFINITIVE HOST: SHEEP + GOATS

INTERMEDIATE HOST: LAND SNAILS + SLUGS

Lymphatic-Tracheal Migration

![Diagram](image)

L3 ← L1 inside intermediate host

PATHOLOGY

Nonpathogenic in domestic small ruminants

Pathogenic in Bighorn Sheep

CLINICAL SIGNS

DEATH in Big Horn lambs

DIAGNOSIS

ID of LARVAE in feces → need a RECTAL sample

Necropsy → EGGS + LARVAE found in LUNGS

ANTHELMINTICS

ALL effective, Levamisole preferred - treat at first sign!
Muellerius capillaris "Goat Lung Worm"

Order: Strongylida
Superfamily: Metastrongyloidea

INDIRECT LIFE CYCLE

DEFINITIVE HOST: GOATS (i) + SHEEP

INTERMEDIATE HOST: LAND SNAILS + SLUGS

Lymphatic-Tracheal Migration

L1 → L1 inside intermediate host

Prepatent period: 3-5 weeks

PATHOLOGY

ADULTs live in terminal bronchioles + alveoli

Host immune reaction causes worms to become enclosed in fibrous nodules

CLINICAL SIGNS

SHEEP: asymptomatic

GOATS:
- cough
- anorexia
- weight loss
- 2nd broncho pneumonia

DIAGNOSIS

ID of LARVAE in feces
→ need a RECTAL sample

Necropsy
→ palpable fibrous nodules that contain EGGS + LARVAE

ANTHELMINTICS

Macrolides
Fasciola hepatica "Common Liver Fluke"

INDIRECT LIFE CYCLE

DEFINITIVE HOST: Ruminants + Humans

INTERMEDIATE HOST: Snails

Requires a warm & wet environment endemic to Western and some Southern Gulf states of the US

Prepatent period: 4.5 months

PATHOLOGY

- Ingested metacercaria encyst in the GI tract & releases immature flukes
- Penetrate GI and migrate thru the peritoneal cavity to liver
- By 7-8 wks, migrate to bile ducts
- Adults establish in bile ducts & release eggs from here

CLINICAL SIGNS FASCIOLIASIS

- Can be acute or chronic
- Hepatic insufficiency
 - Since immature flukes consume the liver
 - May also block bile ducts
- Anemia
- Anorexia
- Weakness
- ↓ Production & sudden death

MORPHOLOGY

Adults 1.5 cm wide + 3 cm long

DIAGNOSIS

- ID of EGGS in feces
 - Only can be found in chronic infestations
 - Appear 4.5-6 months post-infestation
- Necropsy

ANTHELMINTICS

- Clorsulon, Fenbendazole
 - Prophylactic treatment
 - Snail control
 - Avoiding pasture when wet
Fascioloides magna | “American” or “Deer Liver Fluke”

INDIRECT LIFE CYCLE

DEFINITIVE HOST: WHITE TAILED DEER

ACCIDENTAL HOST: CATTLE, SHEEP, GOATS, MOOSE, ELK

INTERMEDIATE HOST: SNAILS

Requires a warm + wet environment
endemic to Western and some Southern Gulf states of the US → some as common liver-fluke

Prepatent period: 4.5 months

PATHOLOGY

DEER: adult flukes live in thin-walled cysts in bile ducts, EGGS pass into GI

CATTLE/MOOSE: adult flukes live in thick-walled cysts in bile ducts

SHEEP/GOATS: metacercaria do not mature, instead they MIGRATE thru host + cause tons of damage + DEATH

CLINICAL SIGNS

SHEEP/GOATS: sudden death! usually d/t rupture of a major blood vessel

CATTLE/MOOSE/ELK: usually no clinical signs

→ livers get condemned at slaughter

DIAGNOSIS

Clinical History + Necropsy

ANTHELMINTICS

Clorsulon, Albendazole
- prophylactic treatment
- snail control
- deer control
- avoiding pasture when wet
CNS

Parelaphostrongylus tenuis "Meningeal Worm"

Order: Strongylida **Superfamily:** Trichostrongyloidea

INDIRECT LIFE CYCLE

DEFINITIVE HOST: WHITE TAILED DEER + OTHER RUMINANTS

INTERMEDIATE HOST: LAND SNAILS + SLUGS

- EGGs pass from brain to lungs + hatches there
- L1 coughed up + swallowed

- L3 migrates from stomach to spinal cord
- migrates up spinal cord caudally → cranially

L3 ← L1 inside intermediate host

MORPHOLOGY

- ADULTs 39–91 mm
- Slender, white worms

DIAGNOSIS

- Usually only based on
 - Clinical signs + time of year
- CSF tap looking for eosinophilia
- Necropsy larvae in meninges
- Fecal only works on deer hosts

PATHOLOGY

- Larval migration + inflammation

CLINICAL SIGNS

- WHITE TAILED DEER: usually asymptomatic
- RUMINANTS: • ataxia
 - often fatal
 - paraplegia
 - tetraplegia

PREPARENT PERIOD: 3 months

ANThelmIntICS

- Fenbendazole + Ivermectin
- Anti-Inflammatories

CONTROL

- Keep white-tailed deer out of pastures
- prophylactic deworming
 - Ivermectin q21 days
 - or
 - Eprinomectin q3 months (long range)
EYE

Thelazia sp. “Eye Worm”

Order: Spirurida
Superfamily: Spiruroidea

INDIRECT LIFE CYCLE

- **T. californiens**
 DEFINITIVE HOST: SHEEP + DEER
 (DOGS, CATS, + HUMANS)

- **T. gulosa**
 T. skrjabini
 DEFINITIVE HOST: CATTLE

INTERMEDIATE HOST: FLIES (Diptera)

↓ consume L1 in tears or manure
 (hosts can swallow their tears)

↓ matures to L3 inside FLY

↓ L3 infects eye once FLY lands on a Host
 + develops there into an ADULT

Pre-patent period: 3-6 weeks

PATHOLOGY

None Known
but associated with pink eye

CLINICAL SIGNS

- excess lacrimation
- photophobia
- plugged lacrimal ducts
- 2° pinkeye

DIAGNOSIS

Visualization of the worm

CONTROL

→ surgical removal

→ irrigation with boric acid

→ fly control important
HELMINTHS of SWINE

Not many anthelmintics are officially approved for swine.

MUSCULOSKELETAL
- Trichinella spiralis
- Taenia spp.

RESPIRATORY
- Metastrongylus spp.

URINARY
- Stepheonorus dentatus

SMALL INTESTINE
- Ascaris suum
- Strongyloides ransomi

STOMACH
- Hypostrongylus rubidus

LARGE INTESTINE
- Trichuris suis
- Oesophagostomum spp.
STOMACH

Hyostrongylus rubidus "Red Stomach Worm"

Order: Strongylida **Superfamily:** Trichostrongyloidea

DIRECT LIFE CYCLE

- L3
- L1
- Prepatent period: 21 days

MOST common in pastured pigs

CLINICAL SIGNS

- Anemia
- Onorexia
- D+/V+

DIAGNOSIS

ID of LARVAE with a Baermann

ANTHELMINTICS

Most approved swine dewormers will work

MORPHOLOGY

- 4-8mm

PATHOLOGY

- Larvae invade the gastric glands
 - Chronic wasting
 - Gastric ulceration
 - Degeneration of glands
 - HCl↓ $pepsinogen$ = \uparrow pH

stomach pH

- 2-3: Normal
- 4-5: Activity ↓
- 6.0: Diarrhea
- 7.0: Mucosal sloughing, bacterial invasion
SMALL INTESTINE

Ascaris suum - "Pig Roundworm"

Order: Ascaridida | **Superfamily:** Ascaroidea

DIRECT LIFE CYCLE

Hepato-Tracheal Migration

L1 infective! prepatent period: 6-8 weeks

PATHOLOGY

- Larvae migrate through LIVER + LUNGS can obstruct:
 - small intestine
 - bile duct
 - pancreatic duct
- Antigenic excretory byproducts of molting + migration trigger the host immune response → 2º damage
- Causes these characteristic milky spots on LIVER
- Leads to condemnation at slaughter!

MORPHOLOGY

25-40cm identical to human ascarids

CLINICAL SIGNS

MILD:
- Cough
- Diarrhea
- Weight gain
- "poor-doers"
- Pendulous abdomen

SEVERE:
- Cough with hemorrhagic exudate
- "thump"
- Pneumonia
- Bronchitis

DIAGNOSIS

ID of EGGS in feces

Necropsy - characteristic lungs

ANTHELMINTICS

Treat constantly so that treatment is during the prepatent period in order to prevent migration

CONTROL by maintaining sanitation

MOST economically important nematode of swine
Strongyloides ransomi "Pig Threadworm"

Order: Rhabditoidea **Superfamily:** Rhabditoidea

DIRECT LIFE CYCLE

1. **Prepatent period:**
 - Skin-Tracheal Migration - 9 days
 - Transmammary Transmission - 4-6 days

PATHOLOGY
- Blunting of intestinal villi
 - Inhibits nutrient absorb.
 - Pulmonary migration

CLINICAL SIGNS
- Most severe in suckling piglets
- D+ (hemorrhagic)
- Emaciation, anorexia
- Shunting
- VT
- Anemia

DIAGNOSIS
- ID of EGGS in feces
 - Need a RECTAL sample
- Baermann can help for differentiating LARVAE

MORPHOLOGY
- ADULTs are 6mm

ANTHELMINTICS
- Ivermectin for sows
- Benzimidazoles for piglets

CONTROL by
- Maintaining sanitation
- Keeping pens dry
- Deworm sows b/w litters
LARGE INTESTINE

Trichuris suis "Whipworm"

Order: Enoplida
Superfamily: Trichuroidea

DIRECT LIFE CYCLE

Prepatent period: 6-7 weeks

MORPHOLOGY

3.5 - 8 cm long
Posterior: short + stout
Anterior: long + slender

PATHOLOGY

Necrosis of mucosa in cecum + large intestine

CLINICAL SIGNS

Piglets @ 2-6 months
→ D+
→ anemia
→ anorexia

DIAGNOSIS

ID of EGGs in feces
Characteristic bipolar football EGG

ANTHELMINTICS

Fenbendazole
Oesophagostomum spp. "Nodular Worm"

Order: Strongylida **Superfamily:** Strongyloidea

DIRECT LIFE CYCLE

- **L1/L2**
- **L3**
- Pre-patent period: 40-50 days

MORPHOLOGY

Stout, white worms 8-21 mm long

PATHOLOGY

Necrosis of mucosa in LI
2° to antigenic activity

Nodule formation - purulent, can calcify

CLINICAL SIGNS

Usually asymptomatic
Can cause ↓ growth rates

DIAGNOSIS

ID of EGGS in feces
- Can incubate to hatch to help identify by LARVAE

ANTHELMINTICS

All effective
RESPIRATORY

Metastrongylius spp. “Lungworms”

<table>
<thead>
<tr>
<th>Order: Strongylida</th>
<th>Superfamily: Metastrongyloidea</th>
</tr>
</thead>
</table>

INDIRECT LIFE CYCLE

DEFINITIVE HOST: Pigs

INTERMEDIATE HOST: Earthworms

![Larval EGG](image)

\[L_3 \leftarrow L_1 \text{ in earthworm}\]

Prepatent period: 4 weeks

MORPHOLOGY

Slender white worms up to 58mm

PATHOLOGY

- Larvae breaking into bronchioles
 - Inflammation
 - Pulmonary edema
- Lymphoid hyperplasia
- Vesicular emphysema

Presence of lungworms enhances the pathogenicity of other respiratory agents

CLINICAL SIGNS

- Young piglets initially cough
- Permanently lung consolidation leads to a worsening cough

DIAGNOSIS

- ID of larvated EGGS in feces
- Necropsy - exam of lungs

ANTELLEMINTICS

- Macrolides or Fenbendazole
MUSCULOSKELETAL

Trichinella spiralis

Order: Enoplida
Superfamily: Trichuroidea

DIRECT LIFE CYCLE
Can occur in MOST MAMMALS!

- L1 encysted in striated muscle

prepatent period: 20-24 days

PATHOLOGY

- Cysts can interfere with
 - Muscle function
 - Eosinophilia
 - Acute myositis

CLINICAL SIGNS

- In pigs – NONE

HUMANS:

- V+
 - Headache
 - Photophobia
 - Muscle pain
 - Meningoencephalitis
 - Death

ANTHelmintics

- Adult worms susceptible to most dewormers
- Anti-inflammatories can help

ONCE INGESTED:

1) Cyst digested and L1 released in GI tract
2) Adults develop and mate
3) Females penetrate GI mucosa and enter lymphatics to produce L1
4) L1 migrate to muscles and become encysted
 → Affected muscle cells are referred to as "nurse cells"
5) Encysted larvae remain viable for ~1 year before dying
 → L1 then the cyst calcifies

DIAGNOSIS

- Serology
- or
- Trichinoscope - thin piece of muscle between glass slides examined microscopically

PREVENTION

- Prevent cannibalism
- Cook meat/garbage at 58°C
Taenia spp. "Tapeworms"

Order: Cyclophyllidae **Family:** Taeniidae

INDIRECT LIFE CYCLE
DEFINITIVE HOST: DOGS + CATS
INTERMEDIATE HOST: GRAZING ANIMALS (Ruminants + Pigs)

PATHOLOGY
- LIVER Damage in Pigs
- Cyst formation in LIVER or MUSCLE in Ruminants
 - partial or complete carcass condemnation

CLINICAL SIGNS
None really in the Definitive Hosts

DIAGNOSIS
- Id of EGGS in feces
- Visualization of proglottids in feces
URINARY

Stephanurus dentatus "Swine Kidney Worm"

Order: Strongylida **Superfamily:** Strongyloidea

DIRECT LIFE CYCLE

- In URINE
- L1/L2
- L3
- Prepatent period: 9-16 months!

PATHOLOGY

- Damage 2° to migration
- Muscle abscessation

CLINICAL SIGNS

- Anorexia
- Emaciation
- Poor growth rate
- Posterior paralysis

DIAGNOSIS

- Based on clinical signs
- ID of EGGs in urine
- Necropsy
 - Can find extensive visceral damage d/t larval migration

THEN:

- Wander in LIVER for 3-9 mos
- Leaves LIVER and wanders in the peritoneal cavity until finding and entering the perirenal fat
- Molts to L5 in a cyst connected to the lumen of the ureter

ANTHELMINTICS

- Macrolides + Fenbendazole
HELMINTHS of EQUINES

EYE
- *Thelazia lacrymalis*
 - Eye worm

RESPIRATORY
- *Dictyocaulus arnfieldi*
 - Equine Lungworm

INTEGUMENT
- *Onchocerca cervicalis*
 - Neck Threadworms

STOMACH
- *Draschia megastoma*
- *Habronema muscae*
- *Habronema microstoma*

SMALL INTESTINE
- *Parascaris equorum*
 - Equine Roundworm
- *Strongyloides westeri*
 - Threadworm

LARGE INTESTINE
- *Anoplocephala perfoliata*
 - Ileocecal junction
- Large Strongyles
 - *Strongylus vulgaris*
 - *Strongylus edentatus*
 - *Strongylus equinus*

Small Strongyles (40 spp.)
- *Oxyurus equi*
 - Equine Pinworms
Equine Stomach Worms

- **Draschia megastoma**: 4x most severe, but rare now.
- **Habronema muscae**: 4x most prevalent.
- **Habronema microstoma**: 4x not reported in US (yet).

INDIRECT LIFE CYCLE

DEFINITIVE HOST: EQUINES

INTERMEDIATE HOST: MUSCID FLY

1. Flies deposit L3 LARVAE around horses’ mouth → get swallowed by horse
2. Flies deposit L3 LARVAE on moist skin, wounds, or eye → CUTANEOUS HABRONEMIASIS
 - a.k.a. Summer sores
 - granulomatous reaction
 - reddish brown, greasy skin lesion containing yellow, calcified material the size of rice grains
 - spontaneous healing can occur
 - sx removal or cautery may be needed

PATHOLOGY

- Usually asymptomatic
- Heavy infections can cause gastritis
- Draschia produces most severe lesions
 → nodules up to 10cm in diameter filled with necrotic material + a large number of worms
 → rarely, these nodules can cause mechanical obstruction or rupture & cause Fatal Peritonitis

ANTHELMINTICS

Moxidectin or Ivermectin

+ Fly control, esp. for wounds!

DIAGNOSIS

- EGGS not seen on routine fecals
- Molecular methods available but infrequently used
- May see on gastroscopy or necropsy

Dx Summer Sores: ID LARVAE on skin scraping
Small Intestine these are clinically relevant in foals

Parascaris equorum "Equine Roundworm"

Direct Life Cycle
- Eggs containing L2s hatch in the gut
- L2 migrate thru wall of SI to liver + molt from L2 to L3
- 7-14 days post infection, majority of larvae have made it to lungs
- L3s break out of alveolar capillaries into alveoli, migrate up trachea to be coughed up + swallowed
- Final maturation to adults occurs in SI

Morphology
- Females may be as large as 50 cm long + 8 mm in diameter
- Males may be 15-28 cm long

Pathology + Clinical Signs
- Damage from larval migration
 - Coughing
 - Nasal discharge
 - "Summer colds"
- Developing adult worms in SI
 - Heavy infestations can cause
 - Impaction
 - Rupture
 - Subsequent death

Anthelmintics
- Routine broad spectrum deworming
 - This parasite is one of the reasons foals are dewormed more regularly than adults

Control
- Eggs are hardy + long-lasting in the environment
- "Last year’s foals are the biggest source of eggs for this year’s babies

★ Top concern when you have a colicking foal, esp. if poor deworming hx
Strongyloides westeri; "Equine Threadworm"

DIRECT LIFE CYCLE

ADULT worms reside in SI of foals
- small intestinal enteritis and DI
- skin irritation
- "frenzied behavior" d/t percutaneous infection

PATHOLOGY

CLINICAL SIGNS

Affects foals
Adult horses rarely have clinical signs

TRANSMAMMARY transmission

- mares often have larval stages in their tissues
- parturition activates larval migration to mammary tissues

ANTHELMINTICS

Prevent infection of foals via mare's milk
- Ivermectin for mares routinely within 24 hrs of foaling
LARGE INTESTINE

Anoplocephala perfoliata “Equine Tapeworms”

INDIRECT LIFE CYCLE

DEFINITIVE HOST: EQUINES

INTERMEDIATE HOST: FORAGE MITE (Orbipodidae)

- Immature tapeworms are released from the ingested mite
- Attaches to intestinal lining
 - **ILEOCECAL JUNCTION**

PATHOLOGY + CLINICAL SIGNS

Many are asymptomatic

But can:
- Damage intestinal mucosa
- Be associated with ileal impaction, spasmodic colic, cecal intussusception, and rupture
- Large worm burden can obstruct the bowel

DIAGNOSIS

- ID of EGGS in feces – not very diagnostic/reliable

ANTHELMINTICS

Praziquantel or Pyrantel pamoate at a double dose

Recommended to deworm with something effective against tapeworms at least once per year
Large Strongyles, "Red Worms" or "Blood Worms"

DIRECT LIFE CYCLE

- EGG → L1 → L2 → L3

Internal migration patterns vary by species:

- **Strongylus vulgaris** - migrates to cranial mesenteric artery & branches
 - Prepatent period: 6 months

- **Strongylus edentatus** - migrates to LIVER via portal veins
 - Prepatent period: 11 months

- **Strongylus equinus** - migrates to LIVER and PANCREAS through the peritoneal cavity
 - Prepatent period: 9 months

PATHOLOGY

- Damage to GI mucosa
- **S. vulgaris**
 - Migration to artery damages vascular endothelium
 - → arteritis
 - → thrombosis
 - → embolism of artery
 - → possible fatal infarction of bowel wall
 - All can manifest as COLIC

- **S. edentatus**
 - Migration is confined to the LIVER, thus relatively harmless

- **S. equinus**
 - Migration is confined to the LIVER + PANCREAS, thus relatively harmless

CLINICAL SIGNS

- Unthriftness
- Lethargy
- Anemia
- Hypoproteinemia
- Dependent edema
- Diarrhea

DIAGNOSIS

Based on clinical signs

ID of strongyle EGGS in feces

ANTHELMINTICS

- All Equine dewormers effective
 - Ivermectin
 - Fenbendazole
 - Moxidectin + Praziquantel
Small Strongyles

DIRECT LIFE CYCLE

![Diagram of the life cycle of small strongyles](image)

PATHOLOGY

- NO migration outside of the GI tract
- Larvae encyst in small nodules within the submucosa
- Larvae ➔ Adults in the nodules
- Adults emerge from the nodules and feed on the mucosal surface (blood suckers)

CLINICAL SIGNS

- Usually harmless
- Heavy infections:
 - Emergence from nodules all at once can cause irritation + inflammation
 - Interference with nutrient absorption
 - L1: Unthriftness
 - L2: Lethargy
 - L3: Anemia
 - L4: Hypoproteinemia
 - L5: Dependent edema
 - L6: D+ (death)

DIAGNOSIS

- ID of strongyle EGGS in feces
- Recommended to deworm 2x/year regardless of FEC bc of this

ANTHELMINTICS

All Equine dewormers effective for Adults free in the LI
- Ivermectin
- Fenbendazole
- Moxidectin + Praziquantel

Encysted small strongyles need
- High dose Fenbendazole
- Moxidectin + Praziquantel
Oxyuris equi "Equine Pinworms"

DIRECT LIFE CYCLE

- L3s emerge from ingested EGGS
 - enter mucosa of cecum + colon to feed + molt
- ADULTs live in lumen and feed on gut contents
 - FEMALES migrate to end of intestine and out the anus
 - EGGS laid on perianal skin

MORPHOLOGY

♀

L ≈ 15 cm

♂

L ≈ 2 cm

PATHOLOGY + CLINICAL SIGNS

- Heavily infected horses may be nervous + lose their appetite
- Perianal irritation from rubbing and scratching the area
 - → dull coat + hair loss especially the tail
- 2nd bacterial infection of perianal skin d/t rubbing, scratching + irritation
- Can be some ulceration in intestine resulting from LARVAE feeding on the intestinal mucosa

DIAGNOSIS

"Scotch-tape test"

- collecting EGGS from perianal area for microscopic exam

ANTHELMIINTICS

ALL Equine dewormers effective

- Ivermectin
- Fenbendazole
- Moxidectin + Praziquantel

+ treat any secondary infections
RESPIRATORY

Dictyocaulus arnfieldi; "Equine Lungworm"

DIRECT LIFE CYCLE DONKEYS (♂) and HORSES

LYMPHATIC-TRACHEAL MIGRATION

![Diagram of life cycle]

ADULTS reside in the bronch + bronchioles
EGGS +/- L1s are coughed up + swallowed

PATHOLOGY

chronic, nonsuppurative, eosinophilic, granulomatous pneumonia
most common in the caudal lung lobes
severity dependent upon worm burden

CLINICAL SIGNS

DONKEYS:
- asymptomatic
- more mild than clinical disease
- can handle a HIGH worm burden

HORSES:
- coughing
- dyspnea
- unthriftness
- exercise intolerance
- Death in extreme cases

DIAGNOSIS

ID of LARVAE in feces, sputum, or saliva
via Baerman technique
or Tracheoalveolar wash / Bronchoalveolar lavage

ANTHELMINTICS

broad spectrum dewormers:
- Ivermectin
- Moxidectin

🌟 Take extra care when pasturing horses + donkeys together!

Since donkeys can be big shedders while being asymptomatic
INTEGUMENT

Onchocerca cervicalis "Neck Threadworms"

INDIRECT LIFE CYCLE

DEFINITIVE HOST: EQUINES

INTERMEDIATE HOST: BLACK FLY

- L3 deposited into skin
- FLY picks up L1s when biting
- L3 in the FLY

L3 mature into adults in subQ tissues

PATHOLOGY

Some debate over the role of this parasite in the pathogenesis of a few diseases commonly associated with it

- dermatitis
- fistulous withers
- poll evil
- uveitis

Large numbers of these worms are common also in horses WITHOUT these diseases...

CLINICAL SIGNS

Intense pruritis + associated dermatitis with reaction to microfilaria

DIAGNOSIS

- Skin biopsy - full thickness, ≥6mm diameter
 - Tissue minced + macerated in isotonic saline for several hrs
 - Microfilaria concentrated + stained with new methylene blue

Highly suggestive if extremely itchy 48-72 hrs after deworming (as microfilaria die)

ANTHELMINTICS

- NO treatment effective against adults
- Ivermectin and Moxidectin are efficacious against microfilaria
Thelazia lacrymalis "Eye Worm"

INDIRECT LIFE CYCLE

DEFINITIVE HOST: HORSE

INTERMEDIATE HOST: MUSCOID FLIES (Face Fly + House Fly)

L1 consume L1 in tears or manure (hosts can swallow their tears)

↓ matures to L3 inside FLY

↓ L3 infects eye once FLY lands on a host + develops there into an ADULT

Prepatent period: 2-4 weeks

PATHOLOGY

None known but associated with pink eye

CLINICAL SIGNS

- Excess lacrimation
- Chronic conjunctivitis
- Corneal clouding

Clinical signs tend to be more severe in Europe + Asia compared to North America.

CONTROL

→ Fly control important

DIAGNOSIS

- Visualization of the worm (not reliable)
- Suspicion based on clinical signs
- Can attempt microscopic examination of lacrimal fluids for embryonated eggs or larvae

ANTHELMINTICS

Single anthelmintic dose not effective

Fenbendazole: multi-dose regimen

10mg/kg/day for 5 days

or mechanical removal of worm
TAPEWORMS

Cestodes

HOSTS + PREDILECTION SITES:

- **DOGS + CATS - Taenia spp.**
 SI
- **DOGS - Echinococcus spp.**
- **DOGS, CATS, HUMANS - Dipyldium caninum**
- **RUMINANTS - Moniezia spp.**

- **EQUINES - Anoplocephala perfoliata**
 LI + ileocecal junction

- **PIGS + RUMINANTS - intermediate host for Taenia spp.**
 LIVER + MUSCLE

LIFE CYCLE:
Indirect lifecycle

- LA: Intermediate host: forage mites
- SA: Intermediate hosts also arthropods

CLINICAL SIGNS:
All definitive host species usually asymptomatic

- At most causes issues with young animals
 1. Inhibit nutrient absorption
 2. Potential of blockage
 3. Intestinal upset

Dx: Visualization of proglottids in feces
or fecal to 1D eggs

HUMAN RISK: Echinococcus species causes hydatid dz in humans
FLUKES

Trematodes

HOSTS + PREDILECTION SITES:

- **DOGS - *Fasciolopsis buski***
 - Internal hosts - snails + semi-aquatic birds

- **DOGS + CATS - *Fascioloides magna***
 - **RESPIRATORY**

- **RUMINANTS + HUMANS - *Fasciola hepatica***
 - **LIVER + BILE DUCTS**

- **WHITE-TAILED DEER - *Fascioloides magna***
 - **DOMESTIC RUMINANTS**

LIFE CYCLE:
- Indirect lifecycle
 - Internal hosts - snails + crayfish (all except *Fasciolopsis buski*)

Dx:
- Fecal to ID eggs

HUMAN RISK:
- *Fasciola hepatica*

INTEGUMENT

HOSTS + PREDILECTION SITES:

- **DOGS - *Dipetalonema reconditum***
 - **SKIN**

- **DOGS - Dracunculus insignis***

- **EQUINES - Onchoerca cervicalis***

LIFE CYCLE:
- Indirect life cycles

CLINICAL SIGNS:
- Dracunculus + Onchoerca cause intense pruritis + associated dermatitis

Dx:
- *Dipetalonema -* only important to look for microfilaria in blood a R/O for HW

- Dracunculus - visualization of worm

- Onchoerca - skin bx
EYE WORMS
Thelazia spp.

HOSTS + PREDILECTION SITES:
- **DOGS, CATS, HUMANS, SHEEP, DEER** - *T. californiensis*
- **CATTLE** - *T. gulosa + T. skrjabini*
- **EQUINE** - *T. lacrymalis*

LIFE CYCLE: Indirect lifecycle
- Intermediate hosts = flies
 (muscid - Equine, dipthro - others)

CLINICAL SIGNS: Eye irritation + may be associated with pink eye in LA’s

Dx: Visualization of worm or based on hx

HUMAN RISK: *T. californiensis*

WHIPWORMS
Trichuris spp.

HOSTS + PREDILECTION SITES:
- **DOGS** - *T. vulpis*
- **CATS** - *T. campauba*
- **RUMINANTS + CAMELIDS** - *T. ovis, T. discolor, T. globulosa, T. tenius*
- **SWINE** - *T. avium*

LIFE CYCLE: Direct life cycle
- Fecal-oral route

CLINICAL SIGNS:
- **Dogs + Cats:** D+/mushy stools
- **Swine + Camelids:** Most affected:
 - Camelids - poor growth, anemia, D+
 - Swine - necrosis of cecum + LI

Dx: Fecal to 10 eggs
HOOKWORMS

HOSTS + PREDILECTION SITES:

- DOGS - Ancylostoma caninum
- CATS - A. tubaeforme
- DOGS + CATS - A. braziliense
- DOGS + CATS - Uncinaria stenocephala
- RUMINANTS - Bunostomum spp.

LIFE CYCLE: Direct life cycle - skin transmission (or ingestion w/ ruminants)

CLINICAL SIGNS: Blood suckers!

- anemia
- black, tarry stool
- anorexia

- lung damage 2° to larval migration
- dermatitis 2° to skin transmission

Dx: Fecal to ID eggs

HUMAN RISK: A. braziliense can cause cutaneous larval migrans in humans
ASCARIDS

HOSTS + PREDILECTION SITES:

- DOGS - *Toxocara canis*
- CATS - *Toxocara cati*
- DOGS + CATS - *Toxascaris leonina*
- RACOONS - *Baylascaris procyonis*
- SWINE - *Ascaris suum*
- EQUINE - *Parascaris equorum*

LIFE CYCLE: Direct life cycle - fecal-oral route for all

CLINICAL SIGNS: damage to SI:

- V/D
- Stunted growth / poor doing
- Distended abdomen (LARGE worms) **some risk of impaction**
- Dehydration

Damage from larval migrans (thru lungs + liver):

- Cough
- Nasal discharge
- Bronchitis

Characteristic white milky spots on LIVER of swine

DX: Fecal to 10 eggs

HUMAN RISK: Visceral larval migrans caused by *T. canis* + *T. cati*

Neurotropic larval migrans caused by *Baylascaris sp.*
STRONGYLOIDES spp.

HOSTS + PREDILECTION SITES:

- DOGS + PRIMATES - S. stercoralis
- RUMINANTS - S. papillosus
- SWINE - S. ransomi
- EQUINE - S. westeri

LIFE CYCLE: Direct life cycle - Skin transmission +/- ingestion

CLINICAL SIGNS: adults not very affected, problematic for young

- Damage to SI:
 - D+
 - Abdominal pain
 - Weight loss
 - Blunting of intestinal villi
 - Enteritis
 - "Frenzied behavior" seen in foals

- Damage from skin transmission:
 - Dermatitis + skin irritation

Dx: Fecal to ID Larvae (S. stercoralis, westeri) or Eggs (S. papillosus, ransomi)

HUMAN RISK: S. stercoralis can infect humans
RESPIRATORY

HOSTS + PREDILECTION SITES:

DOGS - *Filaroides osleri*

DOGS + CATS - *Capillaria aerophila*

DOGS + CATS - *Paragonimus kellicotti*

CATS - *Aelurostrongylus abstrusus*

RUMINANTS - *Dictyocaulus spp.*

SMALL RUMINANTS - *Protostrongylus rufusens* → danger to Big Horn Sheep

SMALL RUMINANTS - *Muellerius capillaris*

SWINE - *Metastrongylus*

EQUINES - *Dictyocaulus arnfieldi*

LIFE CYCLE:

- Direct life cycle - *Filaroides, Capillaria, Dictyocaulus spp.*
- Indirect life cycle - *Paragonimus, Aelurostrongylus, Protostrongylus, Muellerius, Metastrongylus*

CLINICAL SIGNS:

- cough
- dyspnea
- wheezing
- anorexia, emaciation
- nasal discharge

Dx:

- Fecal to 1D Eggs *Filaroides, Dictyocaulus spp., Protostrongylus, Muellerius*

- Fecal to 1D Larvae *Capillaria, Metastrongylus*
PRACTICE CASES

Trying to answer practice cases (even without knowing all the right answers) helps to focus on the clinically relevant pieces of information and to present info in ways that makes sense to owners. If you think of all your practice cases as if you’re a mixed animal practitioner, it opens the door for having to explain lots of comparative medicine to clients who own or work with multiple species.

ALPACA PROBS:

Your client who already has a small flock of sheep has decided that they wanted to get a few alpacas as well. They have no prior experience with alpacas, but they say "how different from sheep can they be?"
Among other things you probably need to educate these clients on about their new alpaca friends, what parasite(s) are you particularly concerned about for them and what prevention and treatment strategies do you tell them to utilize?
You get a call from one of your equine clients *freaking out* because some girl at the barn insisted that you can get WORMS in your EYES from being around horses?! She wants to hear from you, since vets know best what we can catch from animals. What do you tell her about the zoonotic risks of eye worms? (Cover your bases and let her know about the risks from any domestic species affected by eye worms).
Working with a rescue organization, you're brought a litter of ~7 wk old puppies with their dam (rescued pregnant - whelping uneventful) for their first well check. You soon learn that this rescue has only worked with adult cats before but wanted to help out this dog, so they're looking for your guidance on this new venture! What do you talk to them about regarding parasite control (treatment & prevention) for these puppies? They say if this whole ordeal goes well, they'll feel comfortable enough to help out more rescue animals with litters, so they ask if this is all the same regarding kittens?
Becky told you yesterday when she brought a fecal sample in for Fido's annual that she didn't see why it needed to be checked, and felt like it might be a waste of time and money since he's always been negative before and he has "never" had any signs of GI upset. His fecal result comes back from the lab today as positive for hookworms!

What do you tell Becky about how Fido picked up this parasite?

Assuming you failed to address the topic of why fecals can be important to check yesterday at the appointment, what do you tell her today on the phone about why it is important to treat him for the hookworms even though they haven't noticed any symptoms in him?
Sweet old Betty & Bob recently adopted a meatball of a pitty from (insert any Southern state where all the New England rescue dogs come from). All they know about her is that she's the sweetest thing ever and she was "on the streets for a long time."

The lil' meatball of love's rescue records show they dewormed her one time (dewormer type not clear...) and they had her on Heartguard monthly while she was there. The last heartworm test with the rescue was negative, but that was 2 months ago and she was rescued from "the streets" in the South just 3 months ago.

What's your best & client-friendly spiel on heartworm in dogs, and what does that mean for this specific patient? When will you retest this dog next?

Would you recommend treating her for other parasites proactively, assuming she had some pre-existing infestation but you have no idea what they dewormed her with?

Would you wait for a fecal result first (pupperoni is asymptomatic)?
THE CLASSIC SOUTHERN RESCUE DOG:
SICK FEEDER PIGS GET CARE TOO:

A new client, Jack, calls your office bright and early Monday morning. He says he's raised a couple feeder pigs every year for himself and his family for over a decade, but this year he's noticed one of the gilts not doing right, and recently just got a lot worse. He tells you she's lost a ton of weight, has stopped eating, and is having diarrhea. You get to the property and see quite an emaciated pig laying in the cool dirt and its very well-muscled friend running to meet you at the gate. The ill gilt is dull, and on exam (which she's just laying down for) she is slightly hypothermic, pale, and seems to have a painful abdomen on palpation. You can see the dark diarrhea staining on her rear. These pigs get a nice big fenced-in dirt area at the back of the property, and the owner feeds largely food scraps with grain as well.

What parasite are you most suspicious about with how this pig looks (BCS: 1-2/5)? The client wants to give this pig care and see what can be done to help her comfortable and eating again.

What test would you like to check to rule in the parasite you're suspicious of?

If you chose to just treat on that assumption, what pathology can be caused by that parasite that you may want to help treat symptomatically (along with whatever dewormer you choose) to help give this gilt a chance to recover?
SICK FEEDER PIGS GET CARE TOO: